Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices

نویسندگان

  • Cheng-Liang Chen
  • Wen-Cheng Lee
چکیده

A multi-product, multi-stage, and multi-period scheduling model is proposed in this paper to deal with multiple incommensurable goals for a multi-echelon supply chain network with uncertain market demands and product prices. The uncertain market demands are modeled as a number of discrete scenarios with known probabilities, and the fuzzy sets are used for describing the sellers’ and buyers’ incompatible preference on product prices. The supply chain scheduling model is constructed as a mixed-integer nonlinear programming problem to satisfy several conflict objectives, such as fair profit distribution among all participants, safe inventory levels, maximum customer service levels, and robustness of decision to uncertain product demands, therein the compromised preference levels on product prices from the sellers and buyers point of view are simultaneously taken into account. The inclusion of robustness measures as part of objectives can significantly reduce the variability of objective values to product demand uncertainties. For purpose that a compensatory solution among all participants of the supply chain can be achieved, a two-phase fuzzy decision-making method is presented and, by means of application of it to a numerical example, proved effective in providing a compromised solution in an uncertain multi-echelon supply chain network. © 2003 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Objective Optimization for Multi-Product Multi-Period Four Echelon Supply Chain Problems Under Uncertainty

The multi-objective optimization for a multi-product multi-period four-echelon supply chain network consisting of manufacturing plants, distribution centers (DCs) and retailers each with uncertain services and uncertain customer nodes are aimed in this paper. The two objectives are minimization of the total supply chain cost and maximization of the average number of products dispatched to custo...

متن کامل

Optimization of Multi-period Three-echelon Citrus Supply Chain Problem

In this paper, a new multi-objective integer non-linear programming model is developed for designing citrus three-echelon supply chain network. Short harvest period, product specifications, high perished rate, and special storing and distributing conditions make the modeling of citrus supply chain more complicated than other ones. The proposed model aims to minimize network costs includin...

متن کامل

A Three-Echelon Multi-Objective Multi-Period Multi-Product Supply Chain Network Design Problem: A Goal Programming Approach

In this paper, a multi-objective multi-period multi-product supply chain network design problem is introduced. This problem is modeled using a multi-objective mixed integer mathematical programming. The objectives are maximizing the total profit of logistics, maximizing service level, and minimizing inconsistency of operations. Several sets of constraints are considered to handle the real situa...

متن کامل

Competitive Supply Chain Network Design Considering Marketing Strategies: A Hybrid Metaheuristic Algorithm

In this paper, a comprehensive model is proposed to design a network for multi-period, multi-echelon, and multi-product inventory controlled the supply chain. Various marketing strategies and guerrilla marketing approaches are considered in the design process under the static competition condition. The goal of the proposed model is to efficiently respond to the customers’ demands in the presenc...

متن کامل

Bi-product inventory planning in a three-echelon supply chain with backordering, Poisson demand, and limited warehouse space

In this paper, we apply continuous review (S-1, S) policy for inventory control in a three-echelon supply chain (SC) including r identical retailers, a central warehouse with limited storage space, and two independent manufacturing plants which offer two kinds of product to the customer. The warehouse of the model follows (M/M/1) queue model where customer demands follow a Poisson probabilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Chemical Engineering

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2004